Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
UNION(edge(x, y, i), h) → UNION(i, h)
EQ(s(x), s(y)) → EQ(x, y)
IF_REACH_1(true, x, y, edge(u, v, i), h) → EQ(y, v)
IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(x, y, i, h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → UNION(i, h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → OR(reach(x, y, i, h), reach(v, y, union(i, h), empty))
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)
REACH(x, y, edge(u, v, i), h) → EQ(x, u)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
UNION(edge(x, y, i), h) → UNION(i, h)
EQ(s(x), s(y)) → EQ(x, y)
IF_REACH_1(true, x, y, edge(u, v, i), h) → EQ(y, v)
IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(x, y, i, h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → UNION(i, h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → OR(reach(x, y, i, h), reach(v, y, union(i, h), empty))
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)
REACH(x, y, edge(u, v, i), h) → EQ(x, u)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
EQ(s(x), s(y)) → EQ(x, y)
UNION(edge(x, y, i), h) → UNION(i, h)
IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
IF_REACH_1(true, x, y, edge(u, v, i), h) → EQ(y, v)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(x, y, i, h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → OR(reach(x, y, i, h), reach(v, y, union(i, h), empty))
IF_REACH_2(false, x, y, edge(u, v, i), h) → UNION(i, h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)
REACH(x, y, edge(u, v, i), h) → EQ(x, u)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 4 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

UNION(edge(x, y, i), h) → UNION(i, h)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


UNION(edge(x, y, i), h) → UNION(i, h)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
UNION(x1, x2)  =  x1
edge(x1, x2, x3)  =  edge(x3)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


EQ(s(x), s(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
EQ(x1, x2)  =  x2
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(x, y, i, h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
or(true, x0)
or(false, x0)
union(empty, x0)
union(edge(x0, x1, x2), x3)
reach(x0, x1, empty, x2)
reach(x0, x1, edge(x2, x3, x4), x5)
if_reach_1(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(true, x0, x1, edge(x2, x3, x4), x5)
if_reach_2(false, x0, x1, edge(x2, x3, x4), x5)
if_reach_1(false, x0, x1, edge(x2, x3, x4), x5)

We have to consider all minimal (P,Q,R)-chains.